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STRUCTURES AND THEIR EVOLUTION IN A TURBULENT SHEAR LAYER 

G. A. Kuz'min, O. A. Likhachev, 
and A. Z. Patashinskii 

UDC 532.517.4 

i. INTRODUCTION 

From the mathematical viewpoint, turbulent fluid motion is represented by~the result of 
excitingmany strongly interacting degrees of freedom. In the motion of these degrees of 
freedom there is hence neither total chaos (which would permit utilization of simple statis- 
tical models), nor total coherence. Recent investigations (see e.g., [1-3]) make the idea 
that many turbulent flows are a system of interacting and quite stable wave packets, vortex 
structures, all the more likely. The spatial separateness often observed for the struc- 
tures indicates that their interaction does not annihilate the possibility of considering a 
structure as a certain "unit" of turbulence. 

There is apparently no single mechanism for the formation of structures in different 
turbulent flows. The widely known dissipative structures are represented by the combined 
product of nonlinearity and dissipation. For instance, Benard cells in convective flows 
and Taylor vortices in circular Couette flows originate and exist in a limited range of non- 
linearity-to-dissipation ratios. In free turbulent flows, jets, wakes, and in mixing layers 
the dissipation plays no visible part in structure formation. It can be assumed that cer- 
tain local integrals of motion are responsible for the existence of structures in these ef- 
fectively nonviscous flows. The prolonged existence of structures naturally results in the 
idea of building up an internal statistical equilibrium therein [4-6]. As has been shown in 
[7, 8], isolated statistically equilibrium structures from two-dimensional point vortices 
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can be formed and should exist unlimltedly in an ideal fluid. The assumption of the close- 
ness of the structures forming turbulence to the statistically equillbrlumnotlceably sim- 
plifies the description and is used below in analyzing the flow in a shear layer. We hence 
preface this analysis by a brief exposition of the main ideas of the statistical mechanics 
of a system of two-dlmensional point vortices [7, 8]. 

Motion of a two-dlmenslonal system of n identical point vortices of intensity r in an 
unbounded space is described by a system of Hamilton equations [9]. The internal system 
energy, the fraction of the total kinetic energy dependent on the location of the vortices 
[9] 

r~ 
E =- 2-~ In l'i- ,~ l' (i. i) 

i<j 

plays the part of the Hamiltonlan., where r i is the coordinate (two-dimensional) of the i-th 
vortex. It is assumed (and this assumption is confirmed by numerical computations) that the 
Hamiltonlan vortex system relaxes to a statistical equilibrium state with the course of time, 
which is described by a mlcrocanonical Gibbs distribution. It is considered that this dis- 
tribution is determined completely by the integrals of motion, the coordinates of the center 

of vorticity R=~ri/, , the moment of inertia, the proportional quantity [9] 
i 

L'-- (1.2) 
i 

and the i n t e r n a l  energy (1 .11 .  The q u a n t i t y  L governs the  s c a l e  of  the  v o r t e x  s t r u c t u r e  
under consideration. The shape of the structure is determined by a dimensionless one-par- 
tlcle distribution function P relative to which an ordinary differential equation 

t d ( d l n ~  

has been derived in [8], where n ffi r/L. Solutions of th~s equation are governed by a slngle 
parameter, the dimensionless temperature of the microcanonlcal ensemble (l/A), or its unique- 
ly related dimensionless internal energy E 

E =n~ r s (~ - -4~ l nL  ). (1 .4)  

St i s  n a t u r a l  to  apply  t h i s  t h e o r y  to  d e s c r i b e  s t r u c t u r e s  in  t u r b u l e n t  mixing l a y e r s ,  
where they  a re  a lmost  two-d imens iona l  v o r t i c e s  [10-12] .  The p a t t e r n  o f  shear  l a y e r  e v o l u -  
t i o n  i s  r e p r e s e n t e d  e s p e c i a l l y  g r a p h i c a l l y  by the  r e s u l t s  of  numer ica l  modeling in  [6 ] ,  where 
the  i n i t i a l  v o r t i c i t y  d i s t r i b u t i o n  in  the  shear  l a y e r  was modeled by a sys tem of  p o i n t  v o r -  
t i c e s .  At each t ime s t a g e  the  shear  l a y e r  i s  a chain  of  s t r u c t u r e s  w i t h i n w h i c h  the  p o i n t  
v o r t i c e s  a r e  o rgan ized  i n t o  s u b s t r u c t u r e s .  Cascade merging of  the  s t r u c t u r e s  i s  obse rved ,  
which as in the experiments in [10-12] occurs mainly in pairs. The simplest model of shear 
layer evolution, a linear chain of palrwlse merging equilibrium structures, is examined in 
[6]. Neglectlng completely the influence of the remlanlng system on the pair of merging 
vortices and relying on conservation of energy and the moment of inertia, the authors ob- 
tain the main evolution characteristics. 

The total pattern of shear layer evolution observable in experiments and in numerical 
modeling is examined in this paper. Two models are studied, the simplest of which is anal- 
ogous to the model in [6]. A more llkely model of the merging is considered, and in 
particular, the influence of adjacent structures on that being formed as well as the 
nonconservatlon of the moment of momentum are taken into account. The purpose of this paper 
is to obtain a relationship between the fundamental shear layer parameters. 

2. FORMULATION OF THE PROBLEM AND A SIMPLE MODEL 

Coherent structures are ordinarily understood to be vorticlty organized into coherent 
bunches. The velocity field is found by the known vortlclty to the accuracy of a potential 
component, which is determined by boundary conditions. Hence, it is convenient to study 
the evolution of turbulent flows in terms of the vortlci~y distribution. In the two-dlmen- 
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sional problem the vortlclty is similar to the charge density, and the point vortices move 
s~milarly to the two-dlmenslonal charged particles in a strong field according to the equa- 
tions of drift theory. 

At the initial instant let the vorticity in an unlimited inviscid fluid be distributed 
uniformly in a band of width ~ near the abscissa axis. It is well known that such a vortic- 
ity distribution is unstable relative to perturbations with wavelength D~.. The time 
of instability development is proportional to D and the perturbation development is hierar- 
chical in nature. Initially, a linear chain of vortex structures of the "cat's eye" type is 
rapidly formed because of the development of the most dangerous instability. Further evolu- 
tion of the shear layer occurs by merger of these structures. 

To analyze the process we use a finlte-dimensional vorticity approximation. We isolate 
a segment of length 2A in the infinite shear layer, and replace the rest by a fixed vortex 
sheet of the same intensity. This vortex sheet produces an external field for the isolated 
layer segment and hinders its twisting into a spiral. We replace the vorticity in the iso- 
lated layer segment by alarge, but finite, number M of point vortices of intensity r. The 
question of the possibiXity of modeling a continuous systemby a system of discrete point 
vortices is examined in [13], where it is shown that such modeling is possible for the prob- 
lem being studied. The passage to the limit~/-,oo, A-,oo, Mr/A =const is performed in 
the flnal formulas. The motion of a system of M point vortices in a given external field is 
described by a system of Hamilton equations with the Hamiltonian [9] 

r ~ H=--~-  ~ ml r~-rjl + r ~ ,  ( ' 0 ,  �9 
i<j i 

where ~ is the stream function of the external field. 

i+_a_)+ u +(A (r) = 4~/' ' 

In our case 

r /  = \ .  y, 1| 

(2 .I) 

du is the velocity jump on the vector sheet. Because of~the equation of motion the quantity 
H does not change in time and is later called the energy. 

The interaction of the remote vortices induces the largest contribution to the magni- 
tude of the total energy H in (2.1). It is easy to understand, however, that the effective 
radius of interaction is finite. The fundamental mechanism of shear layer evolutlon is Helm- 
holtz instability. The scale D(t) in which instabillty succeeds in being developed in the 
time t is D(t) N t. The coherent vortex displacements Ar(t) Nt are also of the same order. 
For large distances, the logarlthm in (2.1) can be represented as a series in displacements. 
The tlme-independent In Irlj(0)Iresults in a constant in H which is not additive along the length 
of the layer. The field parameters of the vortex sheet are determined by the condition of 
conservation of the layer shape in the form of a llne. Consequently, the principal part of 
the linear term in the displacement is mutually cancelled with the contribution of the vor- 
tex sheet. The remaining part of H is proportional to the length of the shear layer. The 
radius of interaction given by this part is on the order of D(t) and plays the part of a 
tlme-dependent characteristic scale of the evolutionary shear layer. 

The scale D can be considered equal to the characteristic distance between the struc- 
tures. The shear layer can have other characteristic scales, the radius of the structure 0, 
say. However, if it is assumed that the dynamics of the layer is controlled completely by 
the Helmholtz instability, then all these scales should be proportlonal to D in the limit 
t § ~. This means that the shear layer is asymptotically self-similar. The occurrence of 
the self-similarity properties is demonstrated graphically in the models under consider- 
tlon below. 

The magnitude of the dimensionless mlsclbillty parameter A =D/(2p) plays an important 
role in the determination of the total structure evolution pattern. If the parameter A is 
large, then as was noted in [14, 6, 15] etc., the interaction between structures is weak ~n 
strongly nonlinear systems. The structure shape is determined by its nonlinearity and dew 
pends weakly on interaction with the environment, As experiments [ii] and computations [6] 
show, the structure diameter in the shear layer is several times less than their average 
separation. This permits the hope that the fundamental layer characteristics can be deter- 
mined by using an expansion in the parameter A -~. In the zeroth approximation ~n A-I the 
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interaction is considered essential only for the closures of the structures and is expressed 
in their merger. In the gaps between the mergers the structure interaction reduces to the 
mutual transfer of the centers of gravity. It is considered that the Hamilton subsystem, 
the vortex structure, in center of gravity coordinates is closed, and its state evolves 
rapidly into statistical equilibrium. Statistical equilibrium structures are determlned 
by two parameters, the internal energy and the moment of inertia, Consequently, substan- 
tial information about the shear layer dynamics can be obtained from the conservation laws. 

Let us study the result of the conservation laws in a simple shear layer model. It is 
assumed that after the development of the most dangerous Helmholtz instability a linear 
chain of structures is formed,in a homogeneous shear layer. A model is considered in which 
the structures merge in pairs to form a linear chain of 2N_ structures after the m-th merger 
cascade (Fig. i). The structure radius Pm is assumed smalT compared to the separation D m = 
2mDo. In this case the, energy (2.1) can be written in the form 

2 2 

.~r ~lnDij + . . r  H = 2 N , , , E , , ,  - -  4--K- 

Here E m is the internal energy of the structures (i.i), R i = Dm(i + i/2), $ = --Nm' --Nm q-I, 
.... Nm -- I; D~j = IR~ Rjl; nm is the number of point vortices in each structure. It is 
convenient to represent H as the sum of interaction energies of structure pairs with the 
numbers 2k, 2k + i, and 2k', 2k' + i, where k, k' run through the values --Nm/2, -Nm/2 + 
i,..., Nm/2 -- i: 

H =  2 E " - - 2 ~  lnDm 4= ~a~, ln{4(k' --k)=[4(k'--k)2-- 

- -  1] D'.,] + n  mr {~p [(2k q- t/2) Din] + ~p [(2k -4- 3/2) Dm]}}. 

The total energy after the pairwise mergers is written in the form 

(2.2) 

{, } H = 2E,,,+ -- ~ 2., In (2 [ k' -- k [ D,,,) + 2nmr$[(2k+l) D,.]. (2.3) 
kt 

The right sides of (2.2) and (2.3) contain a large non-addltlve contribution related to the 
long-range action of the Coulomb potential. As noted above, this contribution is indepen- 
dent of the time and is identical in (2.2) and (2.3). Hence, by equating the right sides of 
(2.2) and (2.3), we obtain an expression for Em+ I that converges in the limit as A § 

=~r~ | ( i - -  1 ) ]  .~r  2 ln2D. E,.+I = 2E,,, 2~t In [D,. I I  ~ = 2Era (2.4) 
-- " L ~=1, -- -rE- 7 "  

Taking (1.4) into account, a recursion formula hence follows for the dimensionless energy 

It is hence seen that the magnitude of the parameter D/(2L) in the limlt as m § | is deter- 
mined just by the magnitude of the dimensionless energy 

D|174 = ~ exp (--4~E.). (2.6) 
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The quantlty L is the root-mean-square radius of the structure (see (1.2)). If the 
values  of  E are not  too l a r g e ,  L determines  the mize of  the s t r u c t u r e .  For l a r g e  E the vor -  
t i c i t y  d i s t r i b u t i o n  becomes more and more peaked [8] .  The c o n c e n t r a t i o n  ke rne l  of  the vor-  
t i c i t y  tu rns  out to be surrounded by an ex t ens ive  r a r e f i e d  "atmosphere" of  po in t  v o r t i c e s .  
The q u a n t i t y  L determines  the  r ad iu s  of  t h i s  atmosphere fo r  l a r g e  ~. I t  i s  hence n a t u r a l  
to take the average r ad ius  

p = O (,) 

as the dimension of the equi l ibr ium structure rather than the quant i ty  L, where P(r) i s  the 
equi l ibr ium one-part lc le d i s t r i b u t i o n  funct lon. Correspondingly, the parameter 

o/(2p) = A = ( -  4 E), (2 .7)  

where ~ = p/L, determines the shear layer miscibility. The dependence A(E) can be obtained 
numerically by solving (1.3). The corresponding graj~h ispresented in Fig. 2. The dashed 
line denotes the asymptotic value A(| equal to 2ye~3~3~ The least possible E corresponds 
to  a t ab l e top  v o r t i c i t y  d i s t r i b u t i o n  [8] and equals  (2 In 2 - - | ) / ( t 6 a ) ~ - - 0 . 0 0 8 .  The graph i l -  
l u s t r a t e s  the quite weak dependence of A on E. The relative distinction between the maximum 
value of A and the minimum value is Just 0.14. Therefore, the limit value of the miscibil- 
ity parameter is determined with the relative accuracy 0.14 from Just the energy conserva- 
tion law. 

In order to complete the calculation of the model parameters, a recursion formula must 
be obtained for the internal moment of inertia. The Hamiltonian (2.1) is not invariant 
with respect to rotation, and the total moment of inertia of the chain is not conserved. 
Hence, it is impossible to obtain the formula required by using reasoning similar to that 
utilized in deriving (2.4). We take account of nonconservation of the momentum by making 
the simple assumption that is based on the structure merger pattern observable in shear 
layers. 

The structure trajectories in shear layers are qualitatively similar to point vortex 
trajectories in a linear chain after the loss of instability [16]. Development of the most 
dangerous instability results in pairwlse relative rotation of the point vortices along the 
trajectories 

aY aX 
ch--b----cos-D--= 2, 

where X, Y are  the  r e l a t i v e  coo rd ina t e s  of  the  vo r t ex  p a i r .  The v o r t i c e s  come t o g e t h e r  to 
the minimal d i s t a n c e  of  0.56D and then  aga in  s e p a r a t e .  The s t r u c t u r e s  merge r a p i d l y  in  the 
shear  l a y e r s ,  coming t oge the r  to  a c e r t a i n  minimal s e p a r a t i o n  a.  We assume t h a t  a = a D ,  
where 1 < a ~ 0 . 5 6 ,  and we n e g l e c t  the change in  the moment of i n e r t i a  of the  p a i r  dur ing  
the merger i t s e l f .  We equate  the moment of i n e r t i a  of the  s t r u c t u r e  being ob ta ined  to the 
moment of  i n e r t i a  of the p a i r  d i r e c t l y  ahead of the  merger.  Using (1.2) we have 

L~+I = L~ + 1--='n'. (2.8) 
4 ~P 

= . . .  ( 2 9 )  
2sm 

o 

From (2.6) we obtain the limit value of the dimensionless energy of the structure 

~| = -- ~ In [3/(~n')]. (2. i0) 

Let us examine two cases. For ~ =0.56 E =0.00i2 and for ~ =i E=0.047 It is hence seen that 
the magnitude of a numerical parameter strongly affects the value of E governing the shape of 
the equilibrium structures. However, the important parameter D/(2L) depends on a not so 
strongly, while the parameter A depends on a still more weakly (see Fig. 2). 

The recursion formula (2.8) for L ~ agrees for a ffi I with that investigated in [6]. The 
value of the dimensionless energy (2.10) differs several times from that obtained in [6] in 
this case. The difference io related to the fact that the influence of the neighbors on the 
merging pair was not taken into account. 
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3. SHEAR LAYER MODEL AS A CHAIN OF CLUSTERS 

Numerical computations [6] show that vortex structures are not in complete statistical 
equilibrium. The representation of the vortex structure as the bound state of several 
equilibrium substructures is more adequate. It is easy to conceive of the possible reason 
for the appearance of such bound states. The instability development time in the double 
scale is only twice the development time Qf the most dangerous instabiltiy. Hence, an in- 
stability of the next order can be excited in a chain of vortex pairs before relaxation 
within the pair will occur, and bound clusters of three, four, and more substrates are formed. 
An isolated system of three vortices performs quite complicated [17, 18], and of four, 
stochastic motion [19]. It is natural to expect that the probability of closure and merger 
will increase with the increase of the number of substrates in a cluster. Hence, the number 
of structures in an evolutionary layer fluctuates near a certain optimal value. 

Let us consider a shear layer model, a linear chain of identically oriented clusters, 
each of which consists of several statistically equilibrium substructures. The recursion 
formulas and limit relations for such a model can be derived perfectly analogously to what 
was done above for the simplest model, The number of substructures per cluster varies be- 
tween a certain minimum and a certain maximum during shear layer evolution. The times for 
which the formulas are derived can always be selected in such a manner that their number 
would be minimal. To be specific, let us examine the case when this number is two, i.e., 
the next merger cycle is realized. The vortex pairs come together and clusters of four 
equilibrium substructures are formed. Then pairwise merger occurs within the four and pairs 
of the next generation form. Let the spacing between the ~ortices of the pair be dm after 
m cascades of pairwise merging, the spacing between the clusters be Dm, and the slope of the 
vortex pairs to the y = 0 plane equal X m. The substructure radius is considered small com- 
pared with all the other dimensions. Simple but rather awkward calculations, analogous 
to those made above in deriving (2.5) and (2.6), yield a relationship between the structure 
parameters in the limit as 

d 2h(E) nd[ .2 /~d '~ �9 ( 3 . 1 )  

After a sufficiently large quantity of mergings, the further evolution of the shear 
layer turns out to be self-similar for the simple shear layer models studied. Theshape of 
the structure and the magnitude of the dimensionless parameters of the shear layer being 
formed after convolution of the vortex sheet can differ significantly from the self-similar. 
The rate at which the dimensionless parameters tend to their self-similar values is not 
identical for different parameters. According to (2.9), the parameter D/(2L) takes on its 
self-similar value of ~/= after 1-2 mergers in the simplest of the models considered, 
and later L increases two times for each merger. Relaxation of the parmaeter~d/(20) occurs 
somewhat more slowly. This fact should be taken into account in analyzing the data of ex- 
periments since the structures in the observed and computed mixing layers ordinarily succeed 
in executing just several mergings. For instance, about four merging cascades is observed 
in the computations [6]. 

Let us again stress that the interval of variation of the function A in (2.7) and (3.1) 
is narrow. This fact can also be utilized in constructing more complex shear layer and 
mixing layer models. The selection of a specific model should be dictated by additional 
information about the structure shape. It can be hoped that such information will be ob- 
tained in future experiments. 
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PROPERTIES OF A MODEL FOR THE TURBULENT MIXING OF THE BOUNDARY 

BETWEEN ACCELERATED LIQUIDS DIFFERING IN DENSITY 

V. E. Neuvazhaev UDC 532.517.4 

A model has been proposed [i] for the turbulent mixing of the interface between acceler- 
ated liquids differing in density, which provides solutions to various problems in analytic form. 
This enables one to examine the behavior of the solution in relation to the empirical con- 
stants in the model. 

A more complicated model for turbulent mixing is considered here that has three param- 
eters, and the role of the newly introduced parameter is examined. Solutions are construct- 
ed for variable acceleration given by power, step, and slnusoidal laws. It is found that 
the width of the mixing region can vary by up to a factor 2 in accordance with the constant 
in the model that characterizes the role of the inertial mechanism. A solution is obtained 
for the mixing of a thin layer, and the problem is referred to an integral for the case of 
finite thickness. 

i. Model with Three Parameters. Two incompressible liquids differing in density are 
placed in an accelerated vessel, and the boundary between them is unstable if the accelera- 
tion is directed from the ~ight llquid into the heavy one. This is the Raylelgh-Taylor in- 
stability. If the viscosity and surface tension are negligibly small, as occurs for high 
accelerations, the boundary is disrupted. One substance begins to mix with the other, and 
experiment shows [2] that the mixing is turbulent. 

There are semlemplrical models for the turbulent mixing. A very simple one with one 
constant was proposed in [3]. An extension of the model is given in [4, 5]. 

The following is a more complicated semlempirical model for turbulent mixing with three 
parameters for a case of two incompressible substances: 

ap_ o op. ( i . i )  
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